Use of Object Oriented Model For Interoperability in Wrapper-
Based Translator for Resolving Representational Differences
between Heterogeneous Systems”

Paul Young, Valdis Berzins, Jun Ge, Lugi

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943, USA

Email: {young, berzins, gejun, lugi} @cs.nps.navy.mil

ABSTRACT

One of the major concerns in the study of software
interoperability is the inconsistent representation of the
same real world entity in various legacy software
products. This paper proposes an object-oriented model
to provide the architecture to consolidate two legacy
schemas in order that corresponding systems may share
attributes and methods through use of an automated
translator. A Federation Interoperability Object Model
(FIOM) is built to capture the information and operations
shared between different systems. An automatic
translator generator is discussed that utilizes the model to
resolve data representation and operation implementation
differences between heterogeneous distributed systems.

Key words: interoperability, object-oriented model,

federation interoperability object model, wrapper
1. INTRODUCTION

In contemporary object-oriented modeling, an object is a
software representation of some real-world entity in the
problem domain. An object has identity (i.e., it can be
distinguished from other objects by a unique identifier of
some kind), state (data associated with it), and behavior
(things you can do to the object or that it can do to other
objects). In the Unified Modeling Language (UML) these
characteristics are captured in the name, attributes, and
operations of the object, respectively. UML distinguishes
an individual object from a set of objects that share the
same attributes, operations, relationships, and semantics-
termed a class in the UML. [BRJ99]

This view of objects and classes has proven valuable in
the development of countless systems in various problem
domains encompassing all degrees of size and
complexity. However, one common characteristic of the

majority of these object-oriented developments is that a
development team that shared common objectives and
had a common view of the real-world entities being
modeled produced them. Often, the developments also
involved a common architecture implemented on a
common target platform, using the same implementation
language and operating system. As a result a single
method of representation of an entity’s name, attributes,
and operations is the norm. Even on heterogeneous
implementations by the same development team,
consistency in the names, attributes and operations used
for the same real-world entity is likely across the various
elements of the architecture. Therefore, capturing the
representation of these properties has not been an issue.
The software representation of the real-world entity
should have the same name, attributes, and operations
across all elements of the architecture if the development
team enforces consistency.

This is not necessarily the case when independently
developed, heterogeneous systems are targeted for
integration and interoperation. The different perspectives
of the real-world entity being modeled by independent
development teams will most likely result in the use of
different class names as well as differences in the number,
definition, and representation of attributes and operations
for the same real-world entity implemented on two or
more different systems. It is the same situation for non-
object-oriented fashioned systems. These differences in
representation of the same real-world entity on different
systems must be reconciled if the systems are to
interoperate.

This paper proposes an object-oriented model for defining
the information and operations shared between systems.
The initial use of the model is targeted for integration of
legacy systems, which generally have not been developed
using the object-oriented paradigm. Defining the

* This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA and

40473-MA.

25Q

interoperation between systems in terms of an object
model however, provides benefits in terms of the
visibility and understandability of the shared information
and provides a foundation for easy extension as new
systems are added to an existing federation. The object
model defined in this paper can be easily constructed
from the external interfaces defined for most legacy
systems (whether object-oriented or not).

Section 2 will introduce the object-oriented model for
interoperability (OOMI) and its structure. In Section 3,
an interoperability object model is defined for a specified
federation of systems. Section 4 presents a overview of
the use of the Federation Interoperability Object Model
(FIOM) by a wrapper-based translator for enabling
general solution to construct the wrapper architecture
interoperability among legacy systems.

2. OBJECT-ORIENTED MODEL FOR
INTEROPERABILITY

An extension of the contemporary object model class
diagram, depicted in Figure 1, is proposed to model the
different possible ways an object might be represented in
a federation of independently developed heterogeneous
systems. The proposed extension includes information
about the different representations that an object’s
attributes and operations may take in different systems in

the federation.

Class Name

Attributes: &, B, %, &, & ...

Operations: A, B, X, A, @, ...

Figure 1. Contemporary Object Model for Each System

This alternative object model includes the following
extensions to the contemporary object model. First, as
- depicted in Figure 2, the object oriented model for
interoperability (OOMI) class diagram will contain a
representative of all attributes included in any defined
representation of he real-world entity modeled by that
class. In Figure 2 these are depicted as attributes o
through ¢ Each attribute may have multiple
representations, ~ resulting from differences in
interpretation by the component system design teams.
From Figure 2, each of attributes o through ¢ has n
representations, labeled og; through ag, for attribute o,
and similarly for-each of the other attributes. A standard
representation for each attribute is also included, labeled
osp for attribute o in Figure 2. The standard
representation is chosen by the interoperability designer
as an intermediate representation to be used during

257

translation.

For each attribute representation, the interoperability
object model class diagram will contain information used
in establishing that the different representations refer to a
common characteristic of the real-world entity being
described. This includes information about both the
syntax of the attribute (attribute type, structure, size, etc.)
and the semantics of the attribute (attribute role,
description, etc.). This information is depicted for
attribute o representation 1 in Figure 2 as o Syntax and
Oiry Semantics, respectively.

In addition, the model will contam one or more
translations required to convert between different
representations of that attribute. These translations can be
defined on a pair-wise basis for all possible
representations- requiring n(n-/) translations for »
different representations. Alternatively, they can be
defined using the standard representation as an
intermediate representation and translation performed in
two steps (representation J to standard to representation
2), requiring 2n translations. The two-step translation
method is depicted in Figure 2, with translation
0r; ToSTD() defined to translate an instance of attribute o
from representation / to the standard representation, and
translation STDToog;() defined to translate an instance of
the standard representation of attribute ¢ to representation

2.

Similarly, the interoperability object model class diagram
extends the contemporary object model class diagram to
include information about different possible
implementations for each operation. Implementation
differences may include differences in operation and
parameter naming, differences in the number and type of
parameters invoked by the operations, and differences in
the internal algorithms used by each operation. As long
as the dynamic behavior of the two implementations is
equivalent for the same input and output conditions, they
can be used interchangeably. Thus, the OOMI class
diagram includes information necessary to determine if
different implementations of an operation are inter-
accessible. This includes information about both the
syntax of the operation (naming, parameters, etc.) and the
semantics of the operation (operation role, behavior,
description, etc.). In addition, for each operation, the
model will contain one or more translations required to
account for operation name and parameter variations
found in different operation implementations. Figure 3
illustrates the operation extension provided in the OOMI
class diagram.

l
4
l

l &

j
¢
T
bra

OR1 ORn OstD Or1 0sD
QORr1 Syntax_ Oira Syntax Ostp Syntax or1 Syntax Orn Syntax Ostp Syntax
ORr) Semantics | « « Ora Semantics Ostp Semantics ¢ri Semantics | * * *| dr, Semantics dsp Semantics
or1ToSTD () rnTOSTD () 6ri1ToSTD () ®,raToSTD () |
STDToo; () STDT o0 () STDTodw: () STDTodxa ()
Figure 2. OOMI Class Diagram Attribute Extension
OPERATIONS
A . 4
An(parml, avag Az,,(parml,..., Am(panm, ceey Zn(parrm, —_— Zln(parml, sy ZSI'D(Parml, cees
parm) parm;) parmy) parm,) parmy) parmy)
An Syntax . .d AmSyntax Astp Syntax 7y Syntax « e .| ZnSyntax Zstp Syntax
Ay Semantics A Semantics Asto Semantics Z;; Semantics Zi, Semantics Zstp Semantics
AnToSTD () AwToSTD () ZuToSTD () Zia ToSTD ()
STDToAn () STDToAR () STDToZ: () STDT6Z: ()
Figure 3. OOMI Class Diagram Operation Extension
each operation, the interoperability designer defines a
C standard implementation for that operation which is used
CLASSISTRUCTURE as an intermediate representation during translation. For
¢ each implementation syntactic and semantic information
is provided in order to establish a correspondence with
: : other operation implementations that are equivalent- for
ClassA ClassX 1 d Z. S o, . 7z
r— example Zp, Syntax and Z;, Semantics for operation
System = ABC 4 implementation n. Finally, translations Z;, ToSTD() and
ProducerClass ConsumerClass g
Xattr, = B STDToZ;,() are used to translate operation and parameter
Atk = o names from operation Z implementation n to the standard
Aattr, =1 Xattr; = @ representation for operation Z’s name and parameters, and
Aop =B Xopi=A vice versa. :
Aopn=M Xopx =TI In addition to having different representations for the

Figure 4. OOMI Class Diagram Class Structure

From Figure 3, it can be seen that the depicted class
diagram contains operations A through Z and that each
operation has a number of different implementations. For
example, operation Z has implementations Z;; through Z;,,
each with a potentially different set of parameters. For

260

same attribute or different implementations for an
operation, heterogeneous object designers may provide
different numbers and types of attributes and operations
for the same real-world entity. One representation of that
real-world entity might include attributes and operations
that another representation omits. Because of this
difference, a mechanism must be provided to capture the

attributes and operations present in the various
representations of the entity. This is provided through the
addition of a Class Structure property to the
interoperability object model class diagram.

Figure 4 depicts the OOMI class structure property for an
example class. A representation of this class is found in
the external interface of a number of systems, as specified
by the ClassA through ClassX class diagrams that
comprise the aggregate Class Structure property. For
each representation, a list of the attributes and operations
included in that representation is included. In addition,
the system of origin of the class and whether the class is
exported ProducerClass) or imported ConsumerClass)
by the system is also included in the class’s attribute

property. As indicated in Figure 4, ClassA contains
attributes Aattry through Aarzr, and operations Aop,
through 4op,. Attribute and operation names for Aattr
through Aattr,and Aop; through 4op,, are the names used
by system ABC as contained in ABC’s external interface.
In addition to listing the attributes and operations included
for each representation, the attributes and operations are
identified in terms of the standard names provided in the
attribute and operation properties of the class. These

standard names are used together with the local names to
locate the translations used to convert the attributes and
operations to a different representation (to or from a
standard representation).

In summary, the Object-Oriented Model for
Interoperability is an extension of the contemporary
object model, augmenting the contemporary model class
diagram with a Class Structure property and extending the
Attribute and Operation properties to capture the different
representations possible for those properties in a
federation of autonomous heterogeneous systems. The
model is extensible in that adding new representations for
an attribute or operation or for a class merely adds a class
to the existing properties while preserving the existing
representations. The model increases the level of
abstraction dealt with by the interoperability engineer by
enabling him to think in terms of the real-world entities
participating in the interoperation between systems and
not in terms of the different representations used. And
finally, by capturing the information needed to represent
the relationships between entity representations and the
translators necessary to convert between representations,
the OOMI supports automated conversion between object
representations. Figure 5 provides a top-level summary
of the proposed OOMI Class Diagram.

26|

<<Interoperability Class>>
Name]

Class Structure (Figure 4)

Extended Attributes (Figure 2)

Extended Operations (Figure 3)

Figure 5. OOMI Class Diagram

3. CONSTRUCTING INTEROPERABILITY
OBJECT MODEL FOR FEDERATION OF
HETEROGENEOUS SYSTEMS

The previously introduced Object Oriented Model for
Interoperability enables information sharing and
cooperative task execution among a federation of
autonomously developed heterogeneous systerns. Using
the information contained in the OOMI class diagrams
computer aid can be applied to the resolution of data
representational differences between heterogeneous
systems. In order to apply computer aid, a model of the
real-world entities involved in the interoperation, termed a
Federation Interoperability Object Model (FIOM), is
constructed for the specified system federation.
Construction of the FIOM is done prior to run-time by a
system designer with the assistance of a specialized
toolset, called the Object Oriented Model for
Interoperability Integrated Development Environment
(OOMI IDE).

The process of constructing a FIOM for a specified
system federation essentially consists of identifying the
real-world entities that reflect the shared information and
tasks and capturing the different representations used by
systems in the federation for that entity. Each real-world
entity is represented in the FIOM as a class, termed a
Federation Interoperability Class (FIC), constructed from
the classes contained in the component systems’ external

interface.

Determination of the real-world entities that define the
interoperation of a federation is not merely a matter of
identifying the classes involved in the external interfaces
of the systems in the federation. Because of the
independently developed, heterogeneous nature of the
systems in the federation, each system may have a
different representation for the real-world entities
involved. Thus, the classes and objects that realize the
external interfaces of the component systems must be
correlated to determine which representations reflect the
same real-world entity. Correlation software is included
as part of the OOMI IDE in order to assist the system
designer by providing a small set of selected
correspondences to be reviewed by domain experts.

4. AUTOMATIC WRAPPER GENERATION

System interoperability involves both the capability to
exchange information between systems and the ability for
joint task execution among different systems. [PIT97]
Both capabilities involve one or more of the following
kinds of actions:

* Send One system transmits a piece of
information to another

e Call One system invokes an operation on
another

e Return Returns a value to the caller

* Create Creates an object on the called system

¢ Destroy Destroys an object on the called system
[BRJ99]

Information exchange is accomplished through means of
a Send operation, where one system, the producer, exports
information that another system, the consumer, imports.
Information transmitted by the producer system can be in
the form of an object of some class defined for the
producer, or it can consist of one or more attributes of an

object defined for the producer.

Joint task execution is accomplished through the use of a
Call operation where one system, a client, invokes an
operation on another, acting as a server for the requested
action. In invoking an operation on a server, a client
system must provide the name of the operation requested
as well as any parameters required by the server to
perform the operation. Required parameters can be in the
form of one or more attributes, operations, or objects. In
addition, in response to a client Call operation, a server
may return a set of attributes, operations, or objects to a
client via a Return operation. Create and Destroy actions
are special instances of a system call.

When information exchange or joint task execution is
performed between heterogeneous systems, the
participating systems must account for differences in
representation of the transmitted information. The
Interoperability Object Model constructed during the pre-
runtime phase for a specified federation of component
systems is used to resolve differences in representation
between interoperating systems. A translator that serves
as an intermediary between component systems
accomplishes representational difference reconciliation at

runtime.

The translation function is anticipated to be implemented
as part of a software wrapper enveloping a producer or
consumer system (or both) in a message-based
architecture, or alternatively as part of the data store
(actual or virtual) in a publish/subscribe architecture. A
software wrapper is a piece of software used to alter the
view provided by a component’s external interface

262

without modifying the underlying component code.
Figure 6 presents an overview of the use of software
wrappers and the involvement of the Federation
Interoperability Object Model in the translation process.

The translations required by the wrapper-resident
translator for both information exchange and joint task
execution are similar. For information exchange, the
source system provides the exported information in the
form of a set of attributes or objects of a producer class in
the native format of the producer. In order to be utilized
by a consumer system, the exported information must be
converted into the format expected by the destination
system. For joint task execution, a client system provides
an operation name and a set of parameter values to a
server system in the native format of the producer. The
parameters may be attributes, operations, or objects of a
client class. Again, this information must be provided to
the destination system in a format recognized by that
system. Thus the operation name, operations, and
parameter values must be converted to the server
representation.

As indicated above, the translator must be capable of
converting instances of a class’s attributes and operations
(or both attributes and operations in the form of an object
of the class) from one representation to another. The
information required to effect these translations is
captured as part of the Interoperability Object Model for a
specified system federation during federation design. As
presented in Figures 3 and 4, each attribute and operation
of a class representing a real-world entity defining the
interoperation includes methods to enable the translation
between attribute and operation representations. Then, at
run time, the translator accesses the information contained
in the model to effect the translation between
representations.

The first action the translator must perform is to
determine the class defining the real-world entity
corresponding to a transmitted object, attribute, or
operation. This can be accomplished through the use of a
mapping developed from the FIOM that maps attribute,
operation, or object representations to the class
representing the corresponding real-word entity in the
model. For instance, from the example provided in the
previous section, objects of class Class4 and ConsumerX
as well as the attributes and operations for these classes
would map to a realworld entity represented by
prototypical class instance RealWorldEntityA. Once the
class corresponding to the transmitted object, attribute, or
operation is determined, the methods defined for each
attribute and operation can be used to effect the
translation between representations.

Datatype_A
Representation

Intermediate Type
Representation

Datatype_X
Representation

Figure 6. FIOM in Automatic Wrapper Generation

If the transmitted entity were set of attributes, such as
would be the case during information exchange, then for
each attribute in the set the appropriate translation method
must be selected. The appropriate translation method is
located by using the Class Structure property to determine
the standard representation for each attribute and then
finding the translations for that attribute in the Attributes
property for the class representing the real-world entity.
The translation provided would either be in terms of a
source-to-destination or a source-to-intermediate
representation conversion depending on the approach
used by the system designer for the federation. In this
manner the translator invokes the appropriate translation
method for each attribute to convert the attribute from the
source system representation to either the destination
system or intermediate representation.
attribute set is then forwarded to the destination system
for appropriate disposition. If an intermediate
representation is used in the translation process, this
process is repeated by the destination system to convert
from the intermediate to destination system
representation.

For instance, continuing our example from the previous
section, suppose System ABC were to transmit the
attributes Adattr; and Aattr; from class ClassA to System
XYZ. Then presuming that the representation used for
System ABC is not useable by System XYZ, Aartr; and
- Aattr; must be translated to a form useable by System
XYZ. For our example a wrapperbased translator on
Systems 4ABC and XYZ will conduct the translation with

The translated

263

the translation performed in two steps using an
intermediate representation of the real-world entity’s

attributes.

As depicted in Figure 7 below, the System ABC wrapper
would intercept the transmitted attributes from System
ABC. Then, using the mapping outlined above, the
wrapper-based translator would first determine that the
intercepted attributes were of class Classd that
corresponds to class RealWorldEntity4 representing the
real-world entity participating in the interoperation.
Then, for each attribute, the appropriate translation
method must be determined. This translation method can
be determined from the Attributes property, given the
standard representation for the attribute. From
RealWorldEntityA’s Class Structure property (see Figure
4), it is determined that Class4 attribute Aattr
corresponds to RealWorldEntityA4’s type Attribute_c and
Aattr, corresponds to type Attribute_f. The appropriate
translation method is then selected A#tribute_q translation
1 (Aattr;ToSTD()) for ProducerA attribute Aattr; and
Attribute_f translation I (dattr;ToSTD()) for ProducerA
attribute Aartr;. The translator would apply these
translation methods to each attribute as appropriate and
forward the resultant intermediate representation to
System XYZ.

The System XYZ wrapper would intercept the incoming
transmission and repeat the process outlined above to
convert the attributes from their intermediate
representation to the ConsumerX representation as

depicted in Figure 7. The resultant translated attributes
would then be forwarded to System XYZ for disposition.

If the transmitted entity is an operation with a set of
parameters, such as would be the case during joint task
execution, then the translator must enable conversion of
both the operation name and parameters and translation
methods for both operation name and parameter set must
be selected. The appropriate translation method for
converting the operation name is located by using the
Class Structure property to determine the standard
representation for the operation name and then finding the
translations for that operation name in the Operations
property for the class representing the real-world entity.
The translation provided would either be in terms of a
source-to-destination or a source-to-intermediate
representation conversion depending on the approach
used by the system designer for the federation. The
translator would then invoke the appropriate translation
method for the operation to convert the operation name
from the source system representation to either the
destination system or intermediate representation.

Operation parameters can either be attributes, objects,
operations, or their combinations. For attribute
parameters, translation of each attribute is conducted as
described in the attribute translation process above.
Translation of object parameters will be discussed in the
next paragraph. Operation parameter translation would
involve both operation name and parameter translation as
described above. The translated operation name and
parameter list is then forwarded to the destination system
for appropriate disposition. As described above for
attribute translation, if an intermediate representation is
used in the translation process, this process is repeated by
the destination system to convert from the intermediate to
destination system representation.

As an example of operation translation, suppose System
ABC wanted to invoke an operation on System XYZ that
corresponded to System ABC operation Aop;. Such a
situation might arise if operation 4op, involved a query of
system ABC’s database and an equivalent operation to
find the same information in System XYZ's database was
desired. In order for System ABC to perform such a task,
an equivalent implementation of operation Aop; must
exist on System XYZ and any differences in representation
between Aop;’s name and parameters must be resolved
for System XYZ to be able to execute the operation call.

Resolution of representational differences is
accomplished by wrapper-based translators on Systems
ABC and XYZ using an intermediate representation of the
real-world entity’s operations and parameters in a similar
manner as was previously done for attributes.

As depicted in Figure 8 below, the System ABC wrapper
would intercept the transmitted operation from System
ABC. Then, using the mapping outlined above, the
wrapper-based translator would first determine that the
intercepted operations were of class Classd that
corresponds to class RealWorldEntityA representing the
real-world entity participating in the interoperation.
Then, for each operation name and parameter, the
appropriate translation method must be determined. For
the operation name, the translation method can be
determined from the Operations property, given the
standard representation for the operation name. From
RealWorldEntity4’s Class Structure property (see Figure
3), it is determined that Class4 operation Aop;
corresponds to RealWorldEntityA Operation_B and
operation Aop, corresponds to Operation_A. The
appropriate translation method is then selected-
Operation_B translation I (Aop;ToSTD()) for ProducerA
operation Aop; and Operation_A translation
(Aop;_To_STD()) for ProducerA operation 4op;.

. SystemABC
Wrapper

: ProducerA : RealWorldEntitvA : ConsumerX
<<become>> — <<become>>
Aattry —> Attribute_ot —> Xattr
Aattny Attribute_f Xattr,
i Xattry
\/

SystemXYZ
Wrapper

Figure 7. Mapping Translation to Wrapper Architecture

o

: ConsumerX

<<become>>

Xopi(Xattrs)
Xopa(Xattr, Xatmm)

: ProducerA : RealWorldObjectA
<<become>>
Aopi(Aattr;, Aattry) .)
Aopa(Aattry) Operat}on_A(Attr}bute_B)
Operation_B(Attribute_g,
Attribute_f)
\
SystemABC
Wrapper

SystemXYZ
Wrapper

Figure 8. Wrapper-based Translator

In addition to translating the operation name, differences

in representation of the operation’s parameters must also

be resolved. For our example, converting parameter
representations would be accomplished in the same
manner, as done previously for converting attribute
representations. The translator would apply these
translation methods to each operation name and parameter
as appropriate and forward the resultant intermediate
representation for the operation to System XYZ.

The System XYZ wrapper would intercept the incoming
transmission and repeat the process outlined above to
convert the operation names and parameters from their
intermediate representation to the ConsumerX
representation as depicted in Figure 8. The resultant
translated operations would then be forwarded to System

XYZ for disposition.

Translation of object representations involves a
combination of the procedures for attribute and operation
conversion outlined above. First though, a

correspondence between the source and destination
object’s class attributes and operations must be
determined from the Class Structure property. If an
intermediate representation is used to effect the
translation, the correspondence between the source and
intermediate representation of the object’s class must be
determined. Once the attribute and operation
correspondence is established between representations,
the methods for attribute and operation translation
outlined above are used to convert between
representations. Again, for translations involving an
intermediate representation, the process must be repeated
by the destination system to convert from the intermediate
to. destination system representations.

5. CONCLUSIONS

An Object-Oriented Model for Interoperability (OOMI) is
proposed in this paper to solve the data and operation
inconsistency problem in legacy systems. A Federation
Interoperability Object Model (FIOM) is defined for a
specific federation of systems designated for
interoperation. The data and operations to be shared

265

between systems are captured in a number of Federation
Interoperability Classes (FICs) used to define the
interoperation between legacy systems. Software
wrappers are generated according to the FIOM that enable
automated translation = between different data
representations and operation implementations..

At this stage, XML-based message translation is being
studied for implementation of the proposed model. The
capability provided by the XML family of tools coincides
nicely with the requirement for data and operation
representation capture and translation.

Some important issues, such as security, real-time, etc.,
are not discussed in this paper. However, the structure of
the semantic and/or syntactic information integrated in the
OOMI preserves the capability of being extended to
address such concerns.

REFERENCES
[BRJ99] Booch,G., Rumbaugh, J., Jacobson, 1., The
Unified Modeling Language User Guide,

Addison-Wesley Longman, Inc., Redding, MA,
1998.

Pitoura, E., “Providing Database Interoperability
through Object-Oriented Language Constructs”,
Journal of Systems Integration, Volume 7, No. 2,
August 1997, pp. 99-126.

[Pit97]

